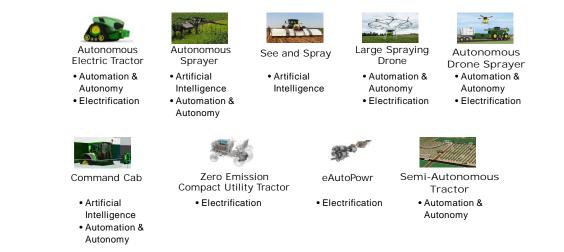


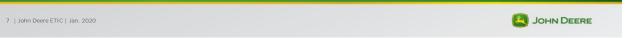
Wieselburg, Jan. 27th 2020

Trends in Tractor Development


Trends in der Traktorenentwicklung

Prof. Dr.-Ing. Peter Pickel John Deere European Technology Innovation Center Kaiserslautern

Agritechnica – JD's Future Technology Zone Exhibits and Technology Fields



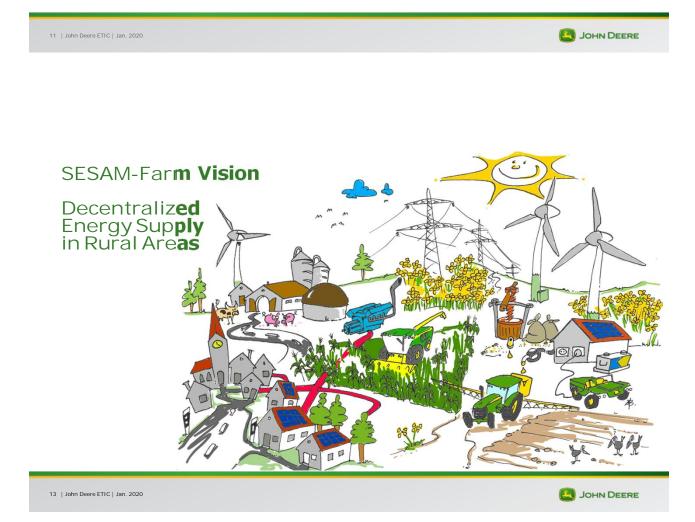
5 Peter Pickel | JD ETIC | Jan. 2020

JOHN DEERE

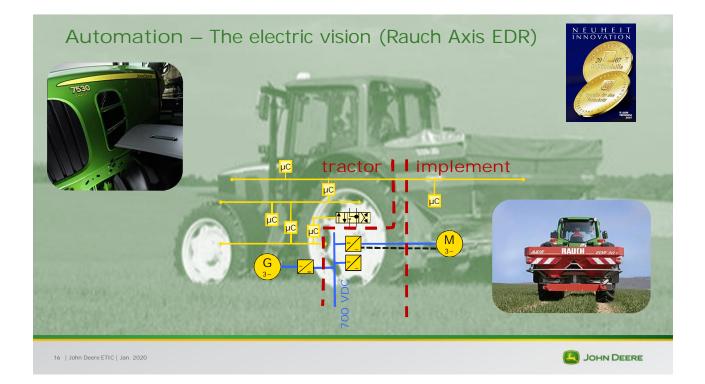
Electrification - Key Enabling Technology

- Efficiency
- Controllability and dynamic response behaviour

8 | John Deere ETIC | Jan. 2020

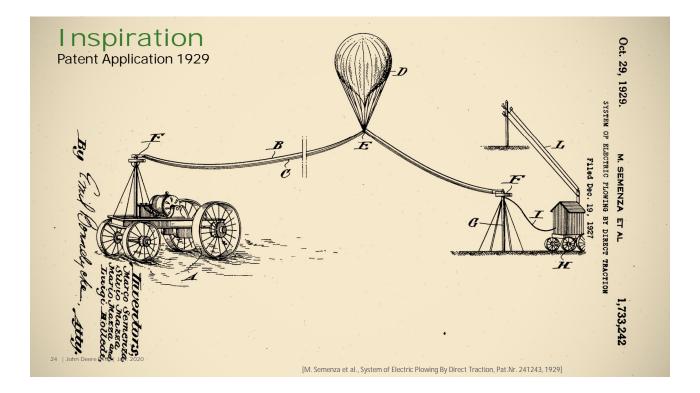

Electrification - Key Enabling Technology

- Efficiency
- Controllability and dynamic response behaviour
- Increased power density

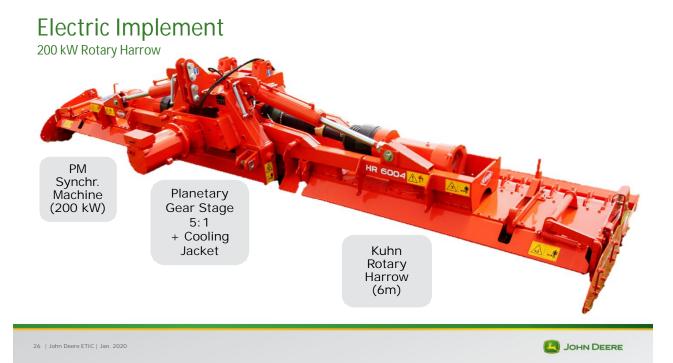

9 John Deere ETIC Jan. 2020	JOHN DEERE
TSS285-690 vs PowerTech PSS 13.5	DESIGNETZ VERBUNDEN MIT XHEATIYER EMERBIE
TSS 285 1000	
10 John Deere ETIC Jan. 2020	JOHN DEERE

Electrification - Key Enabling Technology

- Efficiency
- Controllability and dynamic response behaviour
- Increased power density
- Using renewable energy

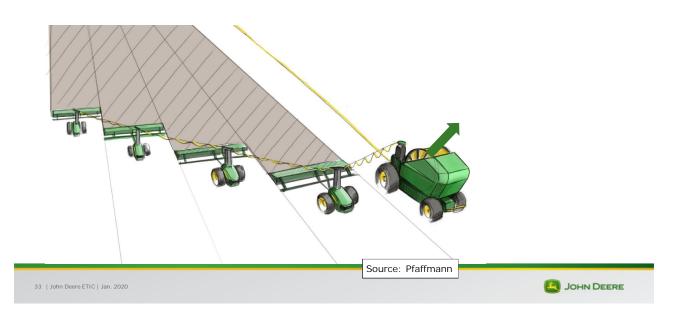


7


The inherent dimension problem of tractor batteries

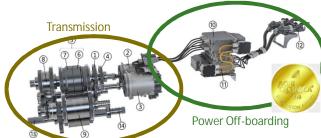
Rated power	kW	50	180	290	380
Operational time/day	h	4	10	12	12
Req. battery cap.1)	kWh	100	900	1740	2280
¹⁾ at 50% utilization Battery			_	3800 l 12t	5000 I 15t
dimension		300 l 600 kg	2000 I 6t kg		
Assumptions: ca. 6,6 kg/kWh (for compar ca. 2,2 I/kWh	ison: SES	AM bei ~10 kg/	/kWh)		

		Corner Stones		
		Machine Performance	e 200%	
		Power Density	200%	
		Machine Cost	50%	
A CORRECT		Operating Cost	50%	
		Applicability of Renewable Power	up to 100%	
		Supports different stationary power sources	Power grid Battery Generator	
	Overcoming Limits of Onboard Batteries	Supported by:	Bundesministerium für Wirtschaft und Energie	
25 EIP AGRI Peter Pickel - John Deere GmbH & Co. KG February 23 rd , 2019		ار 🦲	OHN DEERE	


9

10

John Deere Field Swarm Vision



35 | John Deere ETIC | Jan. 2020

5 Key Theses for Electrification in Agriculture

- 1. Electric power trains are the future
 - effectivity
 - controllability
 - access to renewable energy
 - power density
- 2. Tractor-implement-electrification important driver (hen and egg problem)
- 3. Hybrid systems depending on need for boost power (not range extenders)
- 4. Still missing business case and poor energy density for battery electric ag machines
- 5. Grid services and increase of self-supply with grid-plug-in systems as new (secondary) business cases in agriculture

