"Close the Gap: Overcoming Nutrient Scarcity in Agriculture"

Saskia Visser

Oscar Schoumans

Theun Vellinga

Inge Regelink

Dutch Agriculture

MAGAZINE

THIS TINY COUNTRY FEEDS THE WORLD

The Netherlands has become an agricultural giant by showing what the future of farming could look like.

NATIONAL GEOGRAPHIC^{TT}

Strategy: Circular agriculture

Landbouw, natuur en voedsel: waardevol en verbonden

Nederland als koploper in kringlooplandbouw

A form of sustainable agriculture where the cycle of substances is closed. This means that all substances that disappear from an area as a result of agriculture are also returned to the area.

WAG I

Dutch ambitions related to soil & nutrients

By 2030:

- Use of fossil-based fertilsers and pesticides is significantly reduced/abandoned
- Nutrients in both animal and human excreta are more efficiently used in the production circle
- No more discharge of nutrients to suface water.
- All agricultural soils are sustainably managed, with attendtion for (soil)biodiversity.

Bodemkwaliteitsbeoordeling van landbouwgronden in Nederland -Indicatorset en systematiek, versie 1.0

Woord vooraf

Marjoleine Hanegraaf, Erik van den Elsen, Janjo de Haan & Saskia Visser

Gebied			Indicator	+	y
Fysisch	1	1	Watervasthoudend vermogen	A	_
	2	2	Aggregaatstabiliteit	A	
	3	3	Textuur	A	
	4	4	Indringingsweerstand	A	
	5	5	Droge bulkdichtheid	+	
Chemisch	6	1	OS-gehalte	A	
	7	2	C-gehalte	A	
	8	3	pH	A	
	9	4	Ntotaal	A	
	10	5	Nmin	A	
	11	6	P voorraad + beschikbaar	A	
	12	7	K voorraad + beschikbaar	+	
	13	8	OS (stabiele fractie)	+	
Biologisch	14	1	Potentieel Mineraliseerbare N (PMN)	A	
	15	2	Aaltjes - diversiteit en aantallen	A	
	16	3	Schimmels - soorten en aantallen	A	1
	17	4	Heet water extraheerbare Carbon - HWC ¹	A	
	18	5	Bacteriële biomassa	+	
	19	6	Schimmelbiomassa	+	
	20	7	Regenwormen (aantallen en diversiteit)	+	-
Algemeen	21	1	Visuele beoordeling (Fys/Chem/Biol)	+	

6

Plenty of reasons to avoid manure:

- A threat to public health and biodiversity:
 - carrier of pathogens
 - carrier of heavy metals
 - full of reactive N
 - full of pharmaceuticals
 - full of unappreciated odour
- A source of
 - energy (biogas, dung cakes)
 - organic matter
 - Nutrients: N, P, K, Ca, Mg, Na, S, Cu, Co, Se, Zn, etc.

We cannot

avoid manure

Livestock concentrations

375 750 1 500

Cattle

per km²

8

Population concentrations

P imbalances: optimizing cycles?

Graham K. MacDonald et al. PNAS 2011;108:7:3086-3091

Bouraoui F., Grizzetti B., Aloe A., 2009.

T. De Koeijer, H. Luesink en H. Prins, 2016

Phosphorus use in the EU-27

Schoumans et al, 2015

Gross balance EU27 (roughly)					
IN	kton	%	OUT & Accumulation	kton	%
No-food & detergents	100	4%	Products (exported)	600	23%
Crops & food products	600	23%	Waste & losses	1200	46%
Animal feed & P additives	400	15%	Accumulation	800	31%
Mineral fertilizer	1500	58%			
	2600	100%		2600	100%

- High P input mainly to agricultural production system (73%)
- High P losses (46%; including organic waste) (mainly Human consumption & Food processing; total 42%)
- > High P accumulation 31% (mainly in soils; 29%)

P USE EFFICIENCY HAVE TO INCREASE WITH 50 – 70% TO FEED EU / WORLD

EU: negligible rock phosphate mines completely depended on P import!!!

P reserves worldwide: 70 billion tons World mining: 0.270 billion tons / year ("260 years") Source: USGS, 2019 2. 5R-Strategy for optimizing the nutrient balance

- 1. Reduce nutrient inputs, where possible
- 2. Reuse nutrients from organic residues (inc. manures)
- 3. Recover nutrients from biomass waste streams
- 4. Reduce nutrients losses to surface water
- 5. Redefine systems, where needed

Systemic **large-scale** eco-**innovation** to advance **circular economy** and mineral recovery from **organic waste** in Europe

Circular Solutions for Biowaste

Technical Innovation at demonstration plants

Feedstocks

- Pig manure
- Poultry litter
- Sewage sludge
- Energy crops
- Agro-industrial residues

Innovative Technologies

- Reverse Osmosis (RO)
- Evaporation
- N-stripping
- P-stripping

End Products

- Biogas
- NK concentrates
- (NH₄)₂SO₄ fertiliser
- Struvite & Ca phosphate
- Organic fertilisers and soil improvers
- Organic fibres

Downloads: (www.systemicproject.eu)

- Technical Factsheets of demoplants
- Newsletter of demoplants

Demonstration plant Groot Zevert Digestion (NL)

Location:

Feedstock:

Max capacity:

Digester cap.:

Philosophy:

Nutrient recovery:

- Beltrum (Eastern Netherlands) and built in 2004
- Agriculture: 65% grassland and 35% arable (region Achterhoek)
 - Manure >75% (mainly pig) and food & feed waste
 - 140 000 tons/year
 - 15 000 m³ (mesophilic: 35-38 °C & 20 days)
 - P recovery (Ca~P or struvite), RO (NK concentrate; water)
 - Reduce export of manure surplus over long distances (D)
 - Maximize fertilization effects on agricultural land
 o Soil improver with a low N & P-content
 o NK concentrate as substitute for synthetic fertilizers
 - o P precipitate as secondary resource P-fertilizer industry

Demonstration plant Groot Zevert Digestion (NL)

MMM2: Groene Mineralen Centrale

Decanter centrifuge

Microfiltration

Storage for solid fraction Microsoft Word Microsoft Windows 10 Enterprise 32-bit Build 6.2.9200

Storage of liquids

Version 16.0.9126.2356

Reverse Osmosis

lon exchange

Mineral P recovery as Ca~P (pig slurry)

The recovery of P in the collected product (at 4 pH's) compared to the mineral P content of the source material (manure or digestate).

Demonstration plant Groot Zevert Digestion (NL)

Product composition (preliminary results)

	Ingoing	GZV Recovered products			
	digestate	NK-fertilizer	Soil Conditioner	P-fertilizer	
Dry matter (DM %)	5.8		32	82	
Organic Matter (%)	65% of DM	1-3	89% of DM	45% of DM	
N-total (g/kg)	6	8-15 NH ₄ -N	5.0	20	
P ₂ O ₅ -total (g/kg)	3.5	0.2-0.4	3.2	140	
K ₂ O-total (g/kg)	4	8-20	0.2	5	
Volume (%)	100	5-10	20	2	

Save costs transport:

- Solid fraction (20.000 m³); no long distance transport to Germany any more (> 400 km) a 25 €/m³: savings 0.5 M€ /y
- Liquid fraction (80.000 m³) is reduced by 50%: Volume 40 000 m³ / y and 10-15 € / m³ → savings 0.4 0.6 M€ /y

New innovations: Polymeers from sludge

NOS NIEUWS · BINNENLAND · WOENSDAG, 22:57

Slib uit afvalwater nu grondstof voor sieraden, verf en zelfs stropdassen

Summarise:

- Circular agriculture as answer to societal challenges demands closing resource (nutrient) loops & calls for resource security
- We need to think of manure as a valuable source of nutrients and organic matter
- Many innovations in development
- Need for new regulations to be able to sustainably close the loops at regional level
- -We can do it

Challenges?

Current & Future

!!!! A lot !!!!

